Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Stem Cell Res Ther ; 14(1): 112, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2323672

ABSTRACT

Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.


Subject(s)
Regenerative Medicine , Tissue Engineering , Regenerative Medicine/methods , Tissue Engineering/methods , Cell Engineering , Stem Cells , Cell- and Tissue-Based Therapy , Extracellular Matrix , Tissue Scaffolds
2.
Life Sci ; 319: 121524, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2275448

ABSTRACT

Exosomes are small membrane vesicles secreted by most cell types, and widely exist in cell supernatants and various body fluids. They can transmit numerous bioactive elements, such as proteins, nucleic acids, and lipids, to affect the gene expression and function of recipient cells. Mesenchymal stem cells (MSCs) have been confirmed to be a potentially promising therapy for tissue repair and regeneration. Accumulating studies demonstrated that the predominant regenerative paradigm of MSCs transplantation was the paracrine effect but not the differentiation effect. Exosomes secreted by MSCs also showed similar therapeutic effects as their parent cells and were considered to be used for cell-free regenerative medicine. However, the inefficient and limited production has hampered their development for clinical translation. In this review, we summarize potential methods to efficiently promote the yield of exosomes. We mainly focus on engineering the process of exosome biogenesis and secretion, altering the cell culture conditions, cell expansion through 3D dynamic culture and the isolation of exosomes. In addition, we also discuss the application of MSCs-derived exosomes as therapeutics in disease treatment.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Exosomes/metabolism , Cell- and Tissue-Based Therapy , Regenerative Medicine/methods , Cell Differentiation/physiology
3.
Stem Cells Transl Med ; 11(2): 107-113, 2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1752179

ABSTRACT

Advances in regenerative medicine manufacturing continue to be a priority for achieving the full commercial potential of important breakthrough therapies. Equally important will be the establishment of distribution chains that support the transport of live cells and engineered tissues and organs resulting from these advanced biomanufacturing processes. The importance of a well-managed distribution chain for products requiring specialized handling procedures was highlighted during the COVID-19 pandemic and serves as a reminder of the critical role of logistics and distribution in the success of breakthrough therapies. This perspective article will provide insight into current practices and future considerations for creating global distribution chains that facilitate the successful deployment of regenerative medicine therapies to the vast number of patients that would benefit from them worldwide.


Subject(s)
COVID-19 , Regenerative Medicine , Cell- and Tissue-Based Therapy , Humans , Pandemics , Regenerative Medicine/methods , Tissue Engineering/methods
4.
Cells ; 10(10)2021 09 24.
Article in English | MEDLINE | ID: covidwho-1438525

ABSTRACT

The objective of this review is to describe the evolution of lung tissue-derived diploid progenitor cell applications, ranging from historical biotechnological substrate functions for vaccine production and testing to current investigations around potential therapeutic use in respiratory tract regenerative medicine. Such cell types (e.g., MRC-5 or WI-38 sources) were extensively studied since the 1960s and have been continuously used over five decades as safe and sustainable industrial vaccine substrates. Recent research and development efforts around diploid progenitor lung cells (e.g., FE002-Lu or Walvax-2 sources) consist in qualification for potential use as optimal and renewed vaccine production substrates and, alternatively, for potential therapeutic applications in respiratory tract regenerative medicine. Potentially effective, safe, and sustainable cell therapy approaches for the management of inflammatory lung diseases or affections and related symptoms (e.g., COVID-19 patients and burn patient severe inhalation syndrome) using local homologous allogeneic cell-based or cell-derived product administrations are considered. Overall, lung tissue-derived progenitor cells isolated and produced under good manufacturing practices (GMP) may be used with high versatility. They can either act as key industrial platforms optimally conforming to specific pharmacopoeial requirements or as active pharmaceutical ingredients (API) for potentially effective promotion of lung tissue repair or regeneration.


Subject(s)
Biotechnology/methods , Diploidy , Lung/cytology , Regenerative Medicine/methods , Respiratory Tract Infections/therapy , Animals , Biological Specimen Banks , COVID-19 Vaccines , Cell Line , Cell- and Tissue-Based Therapy , History, 20th Century , History, 21st Century , Humans , Lung/physiology , Regeneration , Regenerative Medicine/history , SARS-CoV-2 , Stem Cell Transplantation , Stem Cells/cytology , Transplantation, Homologous
5.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1341694

ABSTRACT

The current coronavirus disease-19 (COVID-19) pandemic has strongly revived the pressing need to incorporate new therapeutic alternatives to deal with medical situations that result in a dramatic breakdown in the body's normal homeostasis [...].


Subject(s)
Acute Disease/therapy , COVID-19/therapy , Emergency Treatment/methods , Mesenchymal Stem Cell Transplantation/methods , Regenerative Medicine/methods , Acute Disease/mortality , COVID-19/mortality , Clinical Trials as Topic , Emergency Service, Hospital , Emergency Treatment/trends , Humans , Mesenchymal Stem Cell Transplantation/trends , Regenerative Medicine/trends , Survival Rate , Treatment Outcome
6.
J Cereb Blood Flow Metab ; 41(10): 2797-2799, 2021 10.
Article in English | MEDLINE | ID: covidwho-1288495

ABSTRACT

The last 50 years have witnessed the translation of stem cell therapy from the laboratory to the clinic for treating brain disorders, in particular stroke. From the focal stereotaxic transplantation to the minimally invasive intravenous and intraarterial delivery, stem cells display the ability to replenish injured cells and to secrete therapeutic molecules, altogether promoting brain repair. The increased stroke incidence in COVID-19 survivors poses as a new disease indication for cell therapy, owing in part to the cells' robust anti-inflammatory properties. Optimization of the cell transplant regimen will ensure the safe and effective clinical application of cell therapy in stroke and relevant neurological disorders.


Subject(s)
COVID-19/complications , Stem Cell Transplantation , Stroke/etiology , Stroke/therapy , Animals , Brain/pathology , COVID-19/diagnosis , Humans , Incidence , Regenerative Medicine/methods , SARS-CoV-2/isolation & purification , Stem Cell Transplantation/methods , Stroke/pathology
7.
Front Immunol ; 12: 659621, 2021.
Article in English | MEDLINE | ID: covidwho-1285289

ABSTRACT

Methods for suppressing the host immune system over the long term and improving transplantation tolerance remain a primary issue in organ transplantation. Cell therapy is an emerging therapeutic strategy for immunomodulation after transplantation. Mesenchymal stem cells (MSCs) are adult multipotent stem cells with wide differentiation potential and immunosuppressive properties, which are mostly used in regenerative medicine and immunomodulation. In addition, emerging research suggests that MSC-derived exosomes have the same therapeutic effects as MSCs in many diseases, while avoiding many of the risks associated with cell transplantation. Their unique immunomodulatory properties are particularly important in the immune system-overactive graft environment. In this paper, we review the effects of MSC-derived exosomes in the immune regulation mechanism after organ transplantation and graft-versus-host disease (GvHD) from various perspectives, including immunosuppression, influencing factors, anti-inflammatory properties, mediation of tissue repair and regeneration, and the induction of immune tolerance. At present, the great potential of MSC-derived exosomes in immunotherapy has attracted a great deal of attention. Furthermore, we discuss the latest insights on MSC-derived exosomes in organ transplantation and GvHD, especially its commercial production concepts, which aim to provide new strategies for improving the prognosis of organ transplantation patients.


Subject(s)
Exosomes/immunology , Immunomodulation/immunology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Organ Transplantation/methods , Transplantation Tolerance/immunology , Adult , Exosomes/metabolism , Graft vs Host Disease/immunology , Humans , Mesenchymal Stem Cells/metabolism , Regenerative Medicine/methods
8.
J Cell Physiol ; 236(10): 7266-7289, 2021 10.
Article in English | MEDLINE | ID: covidwho-1168883

ABSTRACT

Mesenchymal stem cells (MSCs) are located in various tissues where these cells show niche-dependent multilineage differentiation and secrete immunomodulatory molecules to support numerous physiological processes. Due to their regenerative and reparative properties, MSCs are extremely valuable for cell-based therapy in tackling several pathological conditions including COVID-19. Iron is essential for MSC processes but iron-loading, which is common in several chronic conditions, hinders normal MSC functionality. This not only aggravates disease pathology but can also affect allogeneic and autologous MSC therapy. Thus, understanding MSCs from an iron perspective is of clinical significance. Accordingly, this review highlights the roles of iron and iron-related proteins in MSC physiology. It describes the contribution of iron and endogenous iron-related effectors like hepcidin, ferroportin, transferrin receptor, lactoferrin, lipocalin-2, bone morphogenetic proteins and hypoxia inducible factors in MSC biology. It summarises the excess-iron-induced alterations in MSC components, processes and discusses signalling pathways involving ROS, PI3K/AKT, MAPK, p53, AMPK/MFF/DRP1 and Wnt. Additionally, it evaluates the endogenous and exogenous saviours of MSCs against iron-toxicity. Lastly, it elaborates on the involvement of MSCs in the pathology of clinical conditions of iron-excess, namely, hereditary hemochromatosis, diabetes, ß-thalassaemia and myelodysplastic syndromes. This unique review integrates the distinct fields of iron regulation and MSC physiology. Through an iron-perspective, it describes both mechanistic and clinical aspects of MSCs and proposes an iron-linked MSC-contribution to physiology, pathology and therapeutics. It advances the understanding of MSC biology and may aid in identifying signalling pathways, molecular targets and compounds for formulating adjunctive iron-based therapies for excess-iron conditions, and thereby inform regenerative medicine.


Subject(s)
Iron/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Cell Differentiation/physiology , Cell- and Tissue-Based Therapy/methods , Humans , Immunomodulation/physiology , Mesenchymal Stem Cell Transplantation/methods , Regenerative Medicine/methods , Signal Transduction/physiology
9.
Genes (Basel) ; 12(1)2020 12 23.
Article in English | MEDLINE | ID: covidwho-1000248

ABSTRACT

The placenta is a temporary organ that is discarded after birth and is one of the most promising sources of various cells and tissues for use in regenerative medicine and tissue engineering, both in experimental and clinical settings. The placenta has unique, intrinsic features because it plays many roles during gestation: it is formed by cells from two individuals (mother and fetus), contributes to the development and growth of an allogeneic fetus, and has two independent and interacting circulatory systems. Different stem and progenitor cell types can be isolated from the different perinatal tissues making them particularly interesting candidates for use in cell therapy and regenerative medicine. The primary source of perinatal stem cells is cord blood. Cord blood has been a well-known source of hematopoietic stem/progenitor cells since 1974. Biobanked cord blood has been used to treat different hematological and immunological disorders for over 30 years. Other perinatal tissues that are routinely discarded as medical waste contain non-hematopoietic cells with potential therapeutic value. Indeed, in advanced perinatal cell therapy trials, mesenchymal stromal cells are the most commonly used. Here, we review one by one the different perinatal tissues and the different perinatal stem cells isolated with their phenotypical characteristics and the preclinical uses of these cells in numerous pathologies. An overview of clinical applications of perinatal derived cells is also described with special emphasis on the clinical trials being carried out to treat COVID19 pneumonia. Furthermore, we describe the use of new technologies in the field of perinatal stem cells and the future directions and challenges of this fascinating and rapidly progressing field of perinatal cells and regenerative medicine.


Subject(s)
COVID-19/therapy , Placenta/cytology , SARS-CoV-2 , Stem Cell Transplantation/trends , Stem Cells/cytology , Amniotic Fluid/cytology , Clinical Trials as Topic , Cord Blood Stem Cell Transplantation/methods , Cord Blood Stem Cell Transplantation/trends , Cytokine Release Syndrome/therapy , Drug Carriers , Extraembryonic Membranes/cytology , Female , Forecasting , Hematopoietic Stem Cells/cytology , Humans , Lung/pathology , Macrophage Activation , Mesenchymal Stem Cells/cytology , Nanoparticles , Pregnancy , Preservation, Biological , Regenerative Medicine/methods , Stem Cell Transplantation/methods , Stem Cells/immunology
10.
Int J Mol Sci ; 21(14)2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-910461

ABSTRACT

Stromal vascular fraction (SVF) containing adipose stem cells (ASCs) has been used for many years in regenerative plastic surgery for autologous applications, without any focus on their potential allogenic role. Allogenic SVF transplants could be based on the possibility to use decellularized extracellular matrix (ECM) as a scaffold from a donor then re-cellularized by ASCs of the recipient, in order to develop the advanced therapy medicinal products (ATMP) in fully personalized clinical approaches. A systematic review of this field has been realized in accordance with the Preferred Reporting for Items for Systematic Reviews and Meta-Analyses-Protocols (PRISMA-P) guidelines. Multistep research of the PubMed, Embase, MEDLINE, Pre-MEDLINE, PsycINFO, CINAHL, Clinicaltrials.gov, Scopus database, and Cochrane databases has been conducted to identify articles and investigations on human allogenic ASCs transplant for clinical use. Of the 341 articles identified, 313 were initially assessed for eligibility on the basis of the abstract. Of these, only 29 met all the predetermined criteria for inclusion according to the PICOS (patients, intervention, comparator, outcomes, and study design) approach, and 19 have been included in quantitative synthesis (meta-analysis). Ninety-one percent of the studies previously screened (284 papers) were focused on the in vitro results and pre-clinical experiments. The allogenic use regarded the treatment of perianal fistulas, diabetic foot ulcers, knee osteoarthritis, acute respiratory distress syndrome, refractory rheumatoid arthritis, pediatrics disease, fecal incontinence, ischemic heart disease, autoimmune encephalomyelitis, lateral epicondylitis, and soft tissue defects. The information analyzed suggested the safety and efficacy of allogenic ASCs and ECM transplants without major side effects.


Subject(s)
Adipose Tissue/transplantation , Extracellular Matrix , Mesenchymal Stem Cell Transplantation , Regenerative Medicine , Tissue Scaffolds , Adipose Tissue/cytology , Animals , Extracellular Matrix/ultrastructure , Humans , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Regenerative Medicine/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Transplantation, Homologous/adverse effects , Transplantation, Homologous/methods
12.
Stem Cells Transl Med ; 10(1): 5-13, 2021 01.
Article in English | MEDLINE | ID: covidwho-734123

ABSTRACT

This perspective from a Regenerative Medicine Manufacturing Society working group highlights regenerative medicine therapeutic opportunities for fighting COVID-19. This article addresses why SARS-CoV-2 is so different from other viruses and how regenerative medicine is poised to deliver new therapeutic opportunities to battle COVID-19. We describe animal models that depict the mechanism of action for COVID-19 and that may help identify new treatments. Additionally, organoid platforms that can recapitulate some of the physiological properties of human organ systems, such as the lungs and the heart, are discussed as potential platforms that may prove useful in rapidly screening new drugs and identifying at-risk patients. This article critically evaluates some of the promising regenerative medicine-based therapies for treating COVID-19 and presents some of the collective technologies and resources that the scientific community currently has available to confront this pandemic.


Subject(s)
COVID-19/therapy , Regenerative Medicine/methods , Regenerative Medicine/trends , Animals , Humans , SARS-CoV-2
13.
Stem Cells Transl Med ; 10(1): 27-38, 2021 01.
Article in English | MEDLINE | ID: covidwho-725532

ABSTRACT

Current therapies for novel coronavirus disease (COVID-19) are generally used to manage rather than cure this highly infective disease. Therefore, there is a significant unmet medical need for a safe and effective treatment for COVID-19. Inflammation is the driving force behind coronavirus infections, and the majority of deaths caused by COVID-19 are the result of acute respiratory distress syndrome (ARDS). It is crucial to control the inflammation as early as possible. To date, numerous studies have been conducted to evaluate the safety and efficacy of tissue engineering and regenerative medicine (TERM) products, including mesenchymal stem cells (MSCs), and their derivatives (eg, exosomes) for coronavirus infections, which could be applied for the COVID-19. In this review, first, the impacts of the COVID-19 pandemic in the present and future of TERM research and products are briefly presented. Then, the recent clinical trials and the therapeutic benefits of MSCs in coronavirus-induced ARDS are critically reviewed. Last, recent advances in the field of tissue engineering relevant to coronavirus infections, including three-dimensional platforms to study the disease progression and test the effects of antiviral agents, are described. Moreover, the application of biomaterials for vaccine technology and drug delivery are highlighted. Despite promising results in the preclinical and clinical applications of MSC therapy for coronavirus infections, controversy still exists, and thus further investigation is required to understand the efficacy of these therapies.


Subject(s)
COVID-19/therapy , Cell- and Tissue-Based Therapy/methods , Regenerative Medicine/methods , Tissue Engineering/methods , Animals , COVID-19/complications , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2
14.
Cell Tissue Bank ; 21(3): 405-425, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-614275

ABSTRACT

Acute respiratory infections as one of the most common problems of healthcare systems also can be considered as an important reason for worldwide morbidity and mortality from infectious diseases. Coronaviruses are a group of well-known respiratory viruses that can cause acute respiratory infections. At the current state, the 2019 novel coronavirus is cited as the most worldwide problematic agent for the respiratory system. According to investigations, people with old age and underlying diseases are at higher risk of 2019 novel coronavirus infection. Indeed, they may show a severe form of the disease (with severe acute respiratory infections). Based on the promising role of cell therapy and regenerative medicine approaches in the treatment of several life-threatening diseases, it seems that applying cell-based approaches can also be a hopeful strategy for improving subjects with severe acute respiratory infections caused by the 2019 novel coronavirus. Herein, due to the amazing effects of mesenchymal stem cells in the treatment of various diseases, this review focuses on the auxiliary role of mesenchymal stem cells to reduce inflammatory processes of acute respiratory infections caused by the 2019 novel coronavirus.


Subject(s)
Coronavirus Infections/therapy , Inflammation/therapy , Mesenchymal Stem Cells , Pneumonia, Viral/therapy , Regeneration , COVID-19 , Coronavirus Infections/complications , Humans , Inflammation/etiology , Pandemics , Pneumonia, Viral/complications , Regenerative Medicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL